We present two models based on Dirichlet process mixtures for Bayesian inference in dynamic linear models with stochastic variances. The proposed models allow to capture variance clustering, outliers and structural breaks in time series analysis. The computations require MCMC algorithms, which we implement by the new R-package "dlm" that we have developed. (pagg. 341-344).

Bayesian inference for dynamic linear models with random variances.

PETRONE, SONIA
2007

Abstract

We present two models based on Dirichlet process mixtures for Bayesian inference in dynamic linear models with stochastic variances. The proposed models allow to capture variance clustering, outliers and structural breaks in time series analysis. The computations require MCMC algorithms, which we implement by the new R-package "dlm" that we have developed. (pagg. 341-344).
2007
9788860560209
Classification and Data Analysis 2007, Book of Short Papers
G., Petris; Petrone, Sonia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/54604
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact