Let $(M^n_i, g_i)\to (X,d_X)$ be a Gromov-Hausdorff converging sequence of Riemannian manifolds with ${\rm Sec}_{g_i} \ge -1$, ${\rm diam}\, (M_i)\le D$, and such that the $M^n_i$ are all homeomorphic to tori $T^n$. Then $X$ is homeomorphic to a $k$-dimensional torus $T^k$ for some $0\leq k\leq n$. This answers a question of Petrunin in the affirmative. We show this result is false is the $M^n_i$ are homeomorphic tori which are only assumed to be Alexandrov spaces. When $n=3$, we prove the same tori stability under the weaker condition ${\rm Ric}_{g_i} \ge -2$.
Stability of tori under lower sectional curvature
Bruè, Elia;
2024
Abstract
Let $(M^n_i, g_i)\to (X,d_X)$ be a Gromov-Hausdorff converging sequence of Riemannian manifolds with ${\rm Sec}_{g_i} \ge -1$, ${\rm diam}\, (M_i)\le D$, and such that the $M^n_i$ are all homeomorphic to tori $T^n$. Then $X$ is homeomorphic to a $k$-dimensional torus $T^k$ for some $0\leq k\leq n$. This answers a question of Petrunin in the affirmative. We show this result is false is the $M^n_i$ are homeomorphic tori which are only assumed to be Alexandrov spaces. When $n=3$, we prove the same tori stability under the weaker condition ${\rm Ric}_{g_i} \ge -2$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
gt-v28-n8-p10-s.pdf
accesso aperto
Descrizione: article
Tipologia:
Pdf editoriale (Publisher's layout)
Licenza:
Creative commons
Dimensione
459.58 kB
Formato
Adobe PDF
|
459.58 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.