Let $(M^n_i, g_i)\to (X,d_X)$ be a Gromov-Hausdorff converging sequence of Riemannian manifolds with ${\rm Sec}_{g_i} \ge -1$, ${\rm diam}\, (M_i)\le D$, and such that the $M^n_i$ are all homeomorphic to tori $T^n$. Then $X$ is homeomorphic to a $k$-dimensional torus $T^k$ for some $0\leq k\leq n$. This answers a question of Petrunin in the affirmative. We show this result is false is the $M^n_i$ are homeomorphic tori which are only assumed to be Alexandrov spaces. When $n=3$, we prove the same tori stability under the weaker condition ${\rm Ric}_{g_i} \ge -2$.

Stability of tori under lower sectional curvature

Bruè, Elia;
2024

Abstract

Let $(M^n_i, g_i)\to (X,d_X)$ be a Gromov-Hausdorff converging sequence of Riemannian manifolds with ${\rm Sec}_{g_i} \ge -1$, ${\rm diam}\, (M_i)\le D$, and such that the $M^n_i$ are all homeomorphic to tori $T^n$. Then $X$ is homeomorphic to a $k$-dimensional torus $T^k$ for some $0\leq k\leq n$. This answers a question of Petrunin in the affirmative. We show this result is false is the $M^n_i$ are homeomorphic tori which are only assumed to be Alexandrov spaces. When $n=3$, we prove the same tori stability under the weaker condition ${\rm Ric}_{g_i} \ge -2$.
2024
Bruè, Elia; Naber, Aaron; Semola, Daniele
File in questo prodotto:
File Dimensione Formato  
gt-v28-n8-p10-s.pdf

accesso aperto

Descrizione: article
Tipologia: Pdf editoriale (Publisher's layout)
Licenza: Creative commons
Dimensione 459.58 kB
Formato Adobe PDF
459.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4070197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact