We investigate a first-order mean field planning problem of the form {−∂tu+H(x,Du)=f(x,m)in (0,T)×Rd,∂tm−∇⋅(mHp(x,Du))=0in (0,T)×Rd,m(0,⋅)=m0,m(T,⋅)=mTin Rd, associated to a convex Hamiltonian H with quadratic growth and a monotone interaction term f with polynomial growth. We exploit the variational structure of the system, which encodes the first order optimality condition of a convex dynamic optimal entropy-transport problem with respect to the unknown density m and of its dual, involving the maximization of an integral functional among all the subsolutions u of an Hamilton-Jacobi equation. Combining ideas from optimal transport, convex analysis and renormalized solutions to the continuity equation, we will prove existence and (at least partial) uniqueness of a weak solution (m,u). A crucial step of our approach relies on a careful analysis of distributional subsolutions to Hamilton-Jacobi equations of the form −∂tu+H(x,Du)≤α, under minimal summability conditions on α, and to a measure-theoretic description of the optimality via a suitable contact-defect measure. Finally, using the superposition principle, we are able to describe the solution to the system by means of a measure on the path space encoding the local behavior of the players.

A variational approach to the mean field planning problem

Savaré, Giuseppe
;
2019

Abstract

We investigate a first-order mean field planning problem of the form {−∂tu+H(x,Du)=f(x,m)in (0,T)×Rd,∂tm−∇⋅(mHp(x,Du))=0in (0,T)×Rd,m(0,⋅)=m0,m(T,⋅)=mTin Rd, associated to a convex Hamiltonian H with quadratic growth and a monotone interaction term f with polynomial growth. We exploit the variational structure of the system, which encodes the first order optimality condition of a convex dynamic optimal entropy-transport problem with respect to the unknown density m and of its dual, involving the maximization of an integral functional among all the subsolutions u of an Hamilton-Jacobi equation. Combining ideas from optimal transport, convex analysis and renormalized solutions to the continuity equation, we will prove existence and (at least partial) uniqueness of a weak solution (m,u). A crucial step of our approach relies on a careful analysis of distributional subsolutions to Hamilton-Jacobi equations of the form −∂tu+H(x,Du)≤α, under minimal summability conditions on α, and to a measure-theoretic description of the optimality via a suitable contact-defect measure. Finally, using the superposition principle, we are able to describe the solution to the system by means of a measure on the path space encoding the local behavior of the players.
2019
2019
Savaré, Giuseppe; Porretta, Alessio; Orrieri, Carlo
File in questo prodotto:
File Dimensione Formato  
Orrieri-Porretta-Savare19.pdf

non disponibili

Descrizione: Articolo pubblicato sul sito della rivista
Tipologia: Pdf editoriale (Publisher's layout)
Licenza: Creative commons
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Visualizza/Apri
1807.09874.pdf

accesso aperto

Descrizione: preprint pubblicato su ArXiv
Tipologia: Documento in Pre-print (Pre-print document)
Licenza: Creative commons
Dimensione 771.09 kB
Formato Adobe PDF
771.09 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4032534
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact