Inverse problems in statistical physics are motivated by the challenges of ‘big data’ in different fields, in particular high-throughput experiments in biology. In inverse problems, the usual procedure of statistical physics needs to be reversed: Instead of calculating observables on the basis of model parameters, we seek to infer parameters of a model based on observations. In this review, we focus on the inverse Ising problem and closely related problems, namely how to infer the coupling strengths between spins given observed spin correlations, magnetizations, or other data. We review applications of the inverse Ising problem, including the reconstruction of neural connections, protein structure determination, and the inference of gene regulatory networks. For the inverse Ising problem in equilibrium, a number of controlled and uncontrolled approximate solutions have been developed in the statistical mechanics community. A particularly strong method, pseudolikelihood, stems from statistics. We also review the inverse Ising problem in the non-equilibrium case, where the model parameters must be reconstructed based on non-equilibrium statistics.

Inverse statistical problems: from the inverse Ising problem to data science

Zecchina, Riccardo;
2017

Abstract

Inverse problems in statistical physics are motivated by the challenges of ‘big data’ in different fields, in particular high-throughput experiments in biology. In inverse problems, the usual procedure of statistical physics needs to be reversed: Instead of calculating observables on the basis of model parameters, we seek to infer parameters of a model based on observations. In this review, we focus on the inverse Ising problem and closely related problems, namely how to infer the coupling strengths between spins given observed spin correlations, magnetizations, or other data. We review applications of the inverse Ising problem, including the reconstruction of neural connections, protein structure determination, and the inference of gene regulatory networks. For the inverse Ising problem in equilibrium, a number of controlled and uncontrolled approximate solutions have been developed in the statistical mechanics community. A particularly strong method, pseudolikelihood, stems from statistics. We also review the inverse Ising problem in the non-equilibrium case, where the model parameters must be reconstructed based on non-equilibrium statistics.
2017
2017
Nguyen, H. Chau; Zecchina, Riccardo; Berg, Johannes
File in questo prodotto:
File Dimensione Formato  
1702.01522.pdf

non disponibili

Tipologia: Documento in Post-print (Post-print document)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.23 MB
Formato Adobe PDF
4.23 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4011443
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 186
  • ???jsp.display-item.citation.isi??? 180
social impact