We use the evidence on predictability of returns at dierent horizons to discriminate among competing asset pricing models. Specically, we employ predictors-based variance bounds, i.e. bounds on the variance of the Stochastic Discount Factors (SDFs) that price a given set of returns conditional on the information contained in a vector of return predictors. We document that consumption-based asset pricing models such as the classical long-run risk and habit models do not produce SDFs volatile enough at the one-year horizon. When we look at long-horizons our evidence shows that it is the habit model, not the long-run risk model, that satises our bounds. The rare disasters model satises our predictors-based bounds at each horizon. As a consequence, the investment horizon and the use of conditioning information emerge as fundamental ingredients that permit either to set models apart, or to select the common behavior among apparently dierent models.

Implications of return predictability for consumption dynamics and asset pricing

Favero, Carlo A.
Membro del Collaboration Group
;
Ortu, Fulvio
Membro del Collaboration Group
;
Tamoni, Andrea
Membro del Collaboration Group
;
YANG, HAOXI
Membro del Collaboration Group
2020

Abstract

We use the evidence on predictability of returns at dierent horizons to discriminate among competing asset pricing models. Specically, we employ predictors-based variance bounds, i.e. bounds on the variance of the Stochastic Discount Factors (SDFs) that price a given set of returns conditional on the information contained in a vector of return predictors. We document that consumption-based asset pricing models such as the classical long-run risk and habit models do not produce SDFs volatile enough at the one-year horizon. When we look at long-horizons our evidence shows that it is the habit model, not the long-run risk model, that satises our bounds. The rare disasters model satises our predictors-based bounds at each horizon. As a consequence, the investment horizon and the use of conditioning information emerge as fundamental ingredients that permit either to set models apart, or to select the common behavior among apparently dierent models.
2020
2018
Favero, Carlo A.; Ortu, Fulvio; Tamoni, Andrea; Yang, Haoxi
File in questo prodotto:
File Dimensione Formato  
Paper_FOTY v25forJBESafterOrtu.pdf

non disponibili

Descrizione: Articolo Principale
Tipologia: Documento in Pre-print (Pre-print document)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 565.04 kB
Formato Adobe PDF
565.04 kB Adobe PDF   Visualizza/Apri
accept_letter.pdf

non disponibili

Descrizione: lettera di accettazione da parte editor
Tipologia: Allegato per valutazione Bocconi (Attachment for Bocconi evaluation)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 109.33 kB
Formato Adobe PDF
109.33 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4010744
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact