Memristors are memory resistors that promise the efficient implementation of synaptic weights in artificial neural networks [1]. This kind of technology has permitted the implementation of a large number of real world data in an evolutionary learning artificial system. Human brain is capable of processing such data with standard always equal signals that are the synapsis. Our goal is to present a circuit which responds with binary outputs to the signal exiting from the memristors implemented in an artificial neural system that functions through a high efficiency learning algorithm.

Memristors are memory resistors that promise the efficient implementation of synaptic weights in artificial neural networks [1]. This kind of technology has permitted the implementation of a large number of real world data in an evolutionary learning artificial system. Human brain is capable of processing such data with standard always equal signals that are the synapsis. Our goal is to present a circuit which responds with binary outputs to the signal exiting from the memristors implemented in an artificial neural system that functions through a high efficiency learning algorithm.

Binary synapse circuitry for high efficiency learning algorithm using generalized boundary condition memristor models

BALDASSI, CARLO;
2015

Abstract

Memristors are memory resistors that promise the efficient implementation of synaptic weights in artificial neural networks [1]. This kind of technology has permitted the implementation of a large number of real world data in an evolutionary learning artificial system. Human brain is capable of processing such data with standard always equal signals that are the synapsis. Our goal is to present a circuit which responds with binary outputs to the signal exiting from the memristors implemented in an artificial neural system that functions through a high efficiency learning algorithm.
2015
9783319181639
9783319181646
Bassis, Simone; Esposito, Anna; Morabito, Francesco Carlo
Advances in neural networks: computational and theoretical issues
Memristors are memory resistors that promise the efficient implementation of synaptic weights in artificial neural networks [1]. This kind of technology has permitted the implementation of a large number of real world data in an evolutionary learning artificial system. Human brain is capable of processing such data with standard always equal signals that are the synapsis. Our goal is to present a circuit which responds with binary outputs to the signal exiting from the memristors implemented in an artificial neural system that functions through a high efficiency learning algorithm.
Secco, Jacopo; Vinassa, Alessandro; Pontrandolfo, Valentina; Baldassi, Carlo; Corinto, Fernando
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/3996621
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact