A Bayesian test of a simple null hypothesis H_0 versus a composite alternative H_1 is performed using finitely additive prior distributions in order to investigate the so called Lindley's paradox. In particular two priors for the parameter under H_1 are considered. The first represents a coherently non-informative distributions which is shown to correctly yield the "paradox" because of the overall induced distribution of the parameter. The second, through the use of adherent masses the point specify by H_0, does instead avoid Lindley's paradox.

Coherent distributions and Lindley's paradox

VERONESE, PIERO
1987

Abstract

A Bayesian test of a simple null hypothesis H_0 versus a composite alternative H_1 is performed using finitely additive prior distributions in order to investigate the so called Lindley's paradox. In particular two priors for the parameter under H_1 are considered. The first represents a coherently non-informative distributions which is shown to correctly yield the "paradox" because of the overall induced distribution of the parameter. The second, through the use of adherent masses the point specify by H_0, does instead avoid Lindley's paradox.
1987
9780306425707
Probability and Bayesian Statistics
G., Consonni; Veronese, Piero
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/3750101
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact