We construct an enrichment of the Dirichlet Process that is more flexible with respect to the precision parameter yet still conjugate, starting from the notion of enriched conjugate priors, which have been proposed to address an analogous lack of flexibility of standard conjugate priors in a parametric setting. The resulting enriched conjugate prior allows more flexibility in modeling uncertainty on the marginal and conditionals. We describe an enriched urn scheme which characterizes this process and show that it can also be obtained from the stick-breaking representation of the marginal and conditionals. For non atomic base measures, this allows global clustering of the marginal variables and local clustering of the conditional variables. Finally, we consider an application to mixture models that allows for uncertainty between homoskedasticity and heteroskedasticity.
An enriched conjugate prior for Bayesian nonparametric inference
WADE, SARA KATHRYN;MONGELLUZZO, SILVIA;PETRONE, SONIA
2011
Abstract
We construct an enrichment of the Dirichlet Process that is more flexible with respect to the precision parameter yet still conjugate, starting from the notion of enriched conjugate priors, which have been proposed to address an analogous lack of flexibility of standard conjugate priors in a parametric setting. The resulting enriched conjugate prior allows more flexibility in modeling uncertainty on the marginal and conditionals. We describe an enriched urn scheme which characterizes this process and show that it can also be obtained from the stick-breaking representation of the marginal and conditionals. For non atomic base measures, this allows global clustering of the marginal variables and local clustering of the conditional variables. Finally, we consider an application to mixture models that allows for uncertainty between homoskedasticity and heteroskedasticity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.