Mixtures of Gaussian distributions are popular models for density estimation and clustering, and Bayesian nonparametric mixture models have proved extremely successful in a large range of applied fields.However, several issues remain delicate in the case of multivariate data. We discuss a multivariate mixture model where the prior on the latent distribution extends the popular Dirichlet process in allowing random nested partitions, while maintaining a simple predictive rule. This provides a more flexible description of the clustering structure of the data,without requiring additional computational costs if compared with Dirichlet process mixture models.

Bayesian modeling with nested random partitions

PETRONE, SONIA;TRIPPA, LORENZO
2009

Abstract

Mixtures of Gaussian distributions are popular models for density estimation and clustering, and Bayesian nonparametric mixture models have proved extremely successful in a large range of applied fields.However, several issues remain delicate in the case of multivariate data. We discuss a multivariate mixture model where the prior on the latent distribution extends the popular Dirichlet process in allowing random nested partitions, while maintaining a simple predictive rule. This provides a more flexible description of the clustering structure of the data,without requiring additional computational costs if compared with Dirichlet process mixture models.
2009
short papers, Sco 2009
Petrone, Sonia; Trippa, Lorenzo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/3719367
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact