We describe a Gibbs sampling algorithm for Bayesian analysis of mixtures models with a random number of components, and known components. For this problem (but in the more general case of unknown components), reversible jump MCMC techniques have been recently proposed (Richardson, Green, 1997). The difference between the two approaches is due to the choice of a different parametrization of the problem. This provides an example which shows how the choice of the parametrization also has implications on the computational techniques.

Analisi bayesiana di modelli "annidati" (Bayesian analysis of nested models)

PETRONE, SONIA
1998

Abstract

We describe a Gibbs sampling algorithm for Bayesian analysis of mixtures models with a random number of components, and known components. For this problem (but in the more general case of unknown components), reversible jump MCMC techniques have been recently proposed (Richardson, Green, 1997). The difference between the two approaches is due to the choice of a different parametrization of the problem. This provides an example which shows how the choice of the parametrization also has implications on the computational techniques.
1998
Atti della XXXIX Riunione Scientifica della Società Italiana di Statistica
Petrone, Sonia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/54598
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact