Bayesian nonparametric inference for a nonsequential change-point problem is studied. We use a mixture of products of Dirichlet processes as our prior distribution. This allows the data before and after the change-point to be dependent, even when the change point is known. A Gibbs sampler algorithm is also proposed in order to overcome analytic difficulties in computing the posterior distributions of interest, some of which have support on the space of all distribution functions.
PRODOTTO NON ANCORA VALIDATO
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Bayesian hierarchical nonparametric inference for change-point problems |
Data di pubblicazione: | 1996 |
Autori: | |
Autori: | A., Mira; Petrone, Sonia |
Titolo del libro: | Bayesian Statistics 5 |
Tutti i curatori: | J.M. BERNARDO; J.O.BERGER; A.P. DAWID; A.F.M. SMITH EDS. |
ISBN: | ISBN0198523564 |
Abstract: | Bayesian nonparametric inference for a nonsequential change-point problem is studied. We use a mixture of products of Dirichlet processes as our prior distribution. This allows the data before and after the change-point to be dependent, even when the change point is known. A Gibbs sampler algorithm is also proposed in order to overcome analytic difficulties in computing the posterior distributions of interest, some of which have support on the space of all distribution functions. |
Appare nelle tipologie: | 20 - Contributions to volume, chapters or articles / Contributo in volume Capitolo o Saggio Scientifico |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.