In robust bayesian analysis, ranges of quantities of interest (e. g. posterior means) are usually considered when the prior probability measure varies in a class Γ. Such quantities describe the variation of just one aspect of the posterior measure. The concentration function describes changes in the posterior probability measure more globally, detecting differences in probability concentration and providing, simultaneously, bounds on the posterior probability of all measurable subsets. In this paper, we present a novel use of the concentration function, and two concentration indices, to study such posterior changes for a general class Γ, restricting then our attention to some ∈-contamination classes of priors. © 1995 Società Italiana di Statistica.

Concentration function and sensitivity to the prior

FORTINI, SANDRA;
1995

Abstract

In robust bayesian analysis, ranges of quantities of interest (e. g. posterior means) are usually considered when the prior probability measure varies in a class Γ. Such quantities describe the variation of just one aspect of the posterior measure. The concentration function describes changes in the posterior probability measure more globally, detecting differences in probability concentration and providing, simultaneously, bounds on the posterior probability of all measurable subsets. In this paper, we present a novel use of the concentration function, and two concentration indices, to study such posterior changes for a general class Γ, restricting then our attention to some ∈-contamination classes of priors. © 1995 Società Italiana di Statistica.
1995
Fortini, Sandra; Ruggeri, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/50746
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact