We analyze the predictability of daily data on the CBOE  (Formula presented.)  and  (Formula presented.)  indices, used to capture the average level of risk-neutral risk and downside risk, respectively, as implied by S&P 500 index options. In particular, we use forecast models from the Heterogeneous Autoregressive ((Formula presented.)) class to test whether and how lagged values of the  (Formula presented.)  and of the  (Formula presented.)  may increase the forecasting power of  (Formula presented.)  for the  (Formula presented.)  and the  (Formula presented.). We find that a simple  (Formula presented.)  is very hard to beat in out-of-sample experiments aimed at forecasting the  (Formula presented.). In the case of the  (Formula presented.), the benchmarks (the random walk and an  (Formula presented.)) are clearly outperformed by  (Formula presented.)  models at all the forecast horizons considered and there is evidence that special definitions of the  (Formula presented.)  index based on put options data only yield superior forecasts at all horizons.

Forecasting the CBOE VIX and SKEW Indices Using Heterogeneous Autoregressive Models

Guidolin, Massimo
;
Panzeri, Giulia F.
2024

Abstract

We analyze the predictability of daily data on the CBOE  (Formula presented.)  and  (Formula presented.)  indices, used to capture the average level of risk-neutral risk and downside risk, respectively, as implied by S&P 500 index options. In particular, we use forecast models from the Heterogeneous Autoregressive ((Formula presented.)) class to test whether and how lagged values of the  (Formula presented.)  and of the  (Formula presented.)  may increase the forecasting power of  (Formula presented.)  for the  (Formula presented.)  and the  (Formula presented.). We find that a simple  (Formula presented.)  is very hard to beat in out-of-sample experiments aimed at forecasting the  (Formula presented.). In the case of the  (Formula presented.), the benchmarks (the random walk and an  (Formula presented.)) are clearly outperformed by  (Formula presented.)  models at all the forecast horizons considered and there is evidence that special definitions of the  (Formula presented.)  index based on put options data only yield superior forecasts at all horizons.
2024
2024
Guidolin, Massimo; Panzeri, Giulia F.
File in questo prodotto:
File Dimensione Formato  
Guidolin and Panzeri Forecasting 2024.pdf

accesso aperto

Descrizione: Published article
Tipologia: Pdf editoriale (Publisher's layout)
Licenza: Creative commons
Dimensione 588.74 kB
Formato Adobe PDF
588.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4070467
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact