We consider two neuronal networks coupled by long-range excitatory interactions. Oscillations in the gamma frequency band are generated within each network by local inhibition. When long-range excitation is weak, these oscillations phase lock with a phase shift dependent on the strength of local inhibition. Increasing the strength of long-range excitation induces a transition to chaos via period doubling or quasiperiodic scenarios. In the chaotic regime, oscillatory activity undergoes fast temporal decorrelation. The generality of these dynamical properties is assessed in firing-rate models as well as in large networks of conductance-based neurons.
Temporal decorrelation of collective oscillations in neural networks with local inhibition and long-range excitation
Brunel, Nicolas;
2007
Abstract
We consider two neuronal networks coupled by long-range excitatory interactions. Oscillations in the gamma frequency band are generated within each network by local inhibition. When long-range excitation is weak, these oscillations phase lock with a phase shift dependent on the strength of local inhibition. Increasing the strength of long-range excitation induces a transition to chaos via period doubling or quasiperiodic scenarios. In the chaotic regime, oscillatory activity undergoes fast temporal decorrelation. The generality of these dynamical properties is assessed in firing-rate models as well as in large networks of conductance-based neurons.File | Dimensione | Formato | |
---|---|---|---|
battaglia07.pdf
non disponibili
Descrizione: article
Tipologia:
Pdf editoriale (Publisher's layout)
Licenza:
Copyright dell'editore
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.