We document two new facts about the distributions of answers in famous statistical problems: they are i) multi-modal and ii) unstable with respect to irrelevant changes in the problem. We offer a model in which, when solving a problem, people represent each hypothesis by attending “bottom up” to its salient features while neglecting other, potentially more relevant, ones. Only the statistics associated with salient features are used, others are neglected. The model unifies biases in judgments about i.i.d. draws, such as the Gambler’s Fallacy and insensitivity to sample size, with biases in inference such as under- and overreaction and insensitivity to the weight of evidence. The model makes predictions about how changes in the salience of specific features should jointly shape the prevalence of these biases and measured attention to features, but also create entirely new biases. We test and confirm these predictions experimentally. Bottom-up attention to features emerges as a unifying framework for biases conventionally explained using a variety of stable heuristics or distortions of the Bayes rule.

How people use statistics

Gennaioli, Nicola
;
Shleifer, Andrei
In corso di stampa

Abstract

We document two new facts about the distributions of answers in famous statistical problems: they are i) multi-modal and ii) unstable with respect to irrelevant changes in the problem. We offer a model in which, when solving a problem, people represent each hypothesis by attending “bottom up” to its salient features while neglecting other, potentially more relevant, ones. Only the statistics associated with salient features are used, others are neglected. The model unifies biases in judgments about i.i.d. draws, such as the Gambler’s Fallacy and insensitivity to sample size, with biases in inference such as under- and overreaction and insensitivity to the weight of evidence. The model makes predictions about how changes in the salience of specific features should jointly shape the prevalence of these biases and measured attention to features, but also create entirely new biases. We test and confirm these predictions experimentally. Bottom-up attention to features emerges as a unifying framework for biases conventionally explained using a variety of stable heuristics or distortions of the Bayes rule.
In corso di stampa
Bordalo, Pedro; Conlon, John; Gennaioli, Nicola; Kwon, Spencer; Shleifer, Andrei
File in questo prodotto:
File Dimensione Formato  
Elias_MAPSTAT.pdf

non disponibili

Descrizione: Acceptance letter
Tipologia: Allegato per valutazione Bocconi (Attachment for Bocconi evaluation)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 156.75 kB
Formato Adobe PDF
156.75 kB Adobe PDF   Visualizza/Apri
mapstat.final_.aug31.pdf

non disponibili

Descrizione: article
Tipologia: Documento in Pre-print (Pre-print document)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.13 MB
Formato Adobe PDF
2.13 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4068676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact