Nowadays, uterine fibroids can be treated using Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS), which is a non-invasive therapy exploiting thermal ablation. In order to measure the Non-Perfused Volume (NPV) for treatment response assessment, the ablated fibroid areas (i.e., Region of Treatment, ROT) are manually contoured by a radiologist. The current operator-dependent methodology could affect the subsequent follow-up phases, due to the lack of result repeatability. In addition, this fully manual procedure is time-consuming, considerably increasing execution times. These critical issues can be addressed only by means of accurate and efficient automated Pattern Recognition approaches. In this contribution, we evaluate two computer-assisted segmentation methods, which we have already developed and validated, for uterine fibroid segmentation in MRgFUS treatments. A quantitative comparison on segmentation accuracy, in terms of area-based and distance-based metrics, was performed. The clinical feasibility of these approaches was assessed from physicians’ perspective, by proposing an integrated solution.
Computer-assisted approaches for uterine fibroid segmentation in MRgFUS treatments: quantitative evaluation and clinical feasibility analysis
Tangherloni, Andrea;
2019
Abstract
Nowadays, uterine fibroids can be treated using Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS), which is a non-invasive therapy exploiting thermal ablation. In order to measure the Non-Perfused Volume (NPV) for treatment response assessment, the ablated fibroid areas (i.e., Region of Treatment, ROT) are manually contoured by a radiologist. The current operator-dependent methodology could affect the subsequent follow-up phases, due to the lack of result repeatability. In addition, this fully manual procedure is time-consuming, considerably increasing execution times. These critical issues can be addressed only by means of accurate and efficient automated Pattern Recognition approaches. In this contribution, we evaluate two computer-assisted segmentation methods, which we have already developed and validated, for uterine fibroid segmentation in MRgFUS treatments. A quantitative comparison on segmentation accuracy, in terms of area-based and distance-based metrics, was performed. The clinical feasibility of these approaches was assessed from physicians’ perspective, by proposing an integrated solution.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.