The infinitesimal generator of a time-homogeneous univariate diffusion process is a second-order linear ordinary differential operator. Feller (1952) famously factorized this generator into successive differentiations with respect to scale and speed measure. Later, Feller (1957) also factored an extended generator that loads also on the identity operator in a particular way. We provide a novel financial interpretation of these factorization results and show that they produce an operator representation of a conditionally linear risk-return tradeoff when the conditioning variable evolves like a one-dimensional diffusion process.
Financial interpretation of Feller’s factorization
Tebaldi, Claudio
Membro del Collaboration Group
2022
Abstract
The infinitesimal generator of a time-homogeneous univariate diffusion process is a second-order linear ordinary differential operator. Feller (1952) famously factorized this generator into successive differentiations with respect to scale and speed measure. Later, Feller (1957) also factored an extended generator that loads also on the identity operator in a particular way. We provide a novel financial interpretation of these factorization results and show that they produce an operator representation of a conditionally linear risk-return tradeoff when the conditioning variable evolves like a one-dimensional diffusion process.File | Dimensione | Formato | |
---|---|---|---|
JOD-Carr-Tebaldi _Reprint.pdf
non disponibili
Descrizione: article
Tipologia:
Pdf editoriale (Publisher's layout)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
464.19 kB
Formato
Adobe PDF
|
464.19 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.