The COVID-19 pandemic has led to enormous data movements that strongly affect parameters and forecasts from standard Bayesian vector autoregressions (BVARs). To address these issues, we propose BVAR models with outlier-augmented stochastic volatility (SV) that combine transitory and persistent changes in volatility. The resulting density forecasts are much less sensitive to outliers in the data than standard BVARs. Predictive Bayes factors indicate that our outlier-augmented SV model provides the best fit for the pandemic period, as well as for earlier subsamples of high volatility. In historical forecasting, outlier-augmented SV schemes fare at least as well as a conventional SV model.

Addressing COVID-19 outliers in BVARs with stochastic volatility

Carriero, Andrea;Marcellino, Massimiliano;
In corso di stampa

Abstract

The COVID-19 pandemic has led to enormous data movements that strongly affect parameters and forecasts from standard Bayesian vector autoregressions (BVARs). To address these issues, we propose BVAR models with outlier-augmented stochastic volatility (SV) that combine transitory and persistent changes in volatility. The resulting density forecasts are much less sensitive to outliers in the data than standard BVARs. Predictive Bayes factors indicate that our outlier-augmented SV model provides the best fit for the pandemic period, as well as for earlier subsamples of high volatility. In historical forecasting, outlier-augmented SV schemes fare at least as well as a conventional SV model.
In corso di stampa
2022
Carriero, Andrea; Clark, Todd E.; Marcellino, Massimiliano; Mertens, Elmar
File in questo prodotto:
File Dimensione Formato  
RESTAT MS26244-3 Decision letter.pdf

non disponibili

Descrizione: Lettera editore
Tipologia: Allegato per valutazione Bocconi (Attachment for Bocconi evaluation)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 88.26 kB
Formato Adobe PDF
88.26 kB Adobe PDF   Visualizza/Apri
rest_a_01213.pdf

non disponibili

Descrizione: article
Tipologia: Documento in Post-print (Post-print document)
Licenza: Copyright dell'editore
Dimensione 549.13 kB
Formato Adobe PDF
549.13 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4051978
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact