Discrete random probability measures stand out as effective tools for Bayesian clustering. The investigation in the area has been very lively, with a strong emphasis on nonparametric procedures based on either the Dirichlet process or on more flexible generalizations, such as the normalized random measures with independent increments (NRMI). The literature on finite-dimensional discrete priors is much more limited and mostly confined to the standard Dirichlet-multinomial model. While such a specification may be attractive due to conjugacy, it suffers from considerable limitations when it comes to addressing clustering problems. In order to overcome these, we introduce a novel class of priors that arise as the hierarchical compositions of finite-dimensional random discrete structures. Despite the analytical hurdles such a construction entails, we are able to characterize the induced random partition and determine explicit expressions of the associated urn scheme and of the posterior distribution. A detailed comparison with (infinite-dimensional) NRMIs is also provided: indeed, informative bounds for the discrepancy between the partition laws are obtained. Finally, the performance of our proposal over existing methods is assessed on a real application where we study a publicly available dataset from the Italian education system comprising the scores of a mandatory nationwide test.
Finite-dimensional discrete random structures and Bayesian clustering
Lijoi, Antonio;Pruenster, Igor;Rigon, Tommaso
2024
Abstract
Discrete random probability measures stand out as effective tools for Bayesian clustering. The investigation in the area has been very lively, with a strong emphasis on nonparametric procedures based on either the Dirichlet process or on more flexible generalizations, such as the normalized random measures with independent increments (NRMI). The literature on finite-dimensional discrete priors is much more limited and mostly confined to the standard Dirichlet-multinomial model. While such a specification may be attractive due to conjugacy, it suffers from considerable limitations when it comes to addressing clustering problems. In order to overcome these, we introduce a novel class of priors that arise as the hierarchical compositions of finite-dimensional random discrete structures. Despite the analytical hurdles such a construction entails, we are able to characterize the induced random partition and determine explicit expressions of the associated urn scheme and of the posterior distribution. A detailed comparison with (infinite-dimensional) NRMIs is also provided: indeed, informative bounds for the discrepancy between the partition laws are obtained. Finally, the performance of our proposal over existing methods is assessed on a real application where we study a publicly available dataset from the Italian education system comprising the scores of a mandatory nationwide test.File | Dimensione | Formato | |
---|---|---|---|
Finite-dimensional Discrete Random Structures and Bayesian Clustering.pdf
non disponibili
Descrizione: main file
Tipologia:
Pdf editoriale (Publisher's layout)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.22 MB
Formato
Adobe PDF
|
2.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.