We use a Bayesian vector autoregression with stochastic volatility to forecast government bond yields. We form the conjugate prior from a no-arbitrage affine term structure model. The model improves on the accuracy of point and density forecasts from a no-change random walk and an affine term structure model with stochastic volatility. Our proposed approach may succeed by relaxing the no-arbitrage affine term structure model's requirements that yields obey a factor structure and that the factors follow a Markov process. In the term structure model, its cross-equation no-arbitrage restrictions on the factor loadings appear to play a marginal role in forecasting gains.
No-arbitrage priors, drifting volatilities, and the term structure of interest rates
Carriero, Andrea;Marcellino, Massimiliano
2021
Abstract
We use a Bayesian vector autoregression with stochastic volatility to forecast government bond yields. We form the conjugate prior from a no-arbitrage affine term structure model. The model improves on the accuracy of point and density forecasts from a no-change random walk and an affine term structure model with stochastic volatility. Our proposed approach may succeed by relaxing the no-arbitrage affine term structure model's requirements that yields obey a factor structure and that the factors follow a Markov process. In the term structure model, its cross-equation no-arbitrage restrictions on the factor loadings appear to play a marginal role in forecasting gains.File | Dimensione | Formato | |
---|---|---|---|
No Arbitrage Priors.pdf
non disponibili
Descrizione: article
Tipologia:
Pdf editoriale (Publisher's layout)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
8.46 MB
Formato
Adobe PDF
|
8.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.