We study empirical and hierarchical Bayes approaches to the problem of estimating an infinite-dimensional parameter in mildly ill-posed inverse problems. We consider a class of prior distributions indexed by a hyperparameter that quantifies regularity. We prove that both methods we consider succeed in automatically selecting this parameter optimally, resulting in optimal convergence rates for truths with Sobolev or analytic “smoothness”, without using knowledge about this regularity. Both methods are illustrated by simulation examples.

Bayes procedures for adaptive inference in inverse problems for the white noise model

Szabo, Botond Tibor;
2016

Abstract

We study empirical and hierarchical Bayes approaches to the problem of estimating an infinite-dimensional parameter in mildly ill-posed inverse problems. We consider a class of prior distributions indexed by a hyperparameter that quantifies regularity. We prove that both methods we consider succeed in automatically selecting this parameter optimally, resulting in optimal convergence rates for truths with Sobolev or analytic “smoothness”, without using knowledge about this regularity. Both methods are illustrated by simulation examples.
2016
2015
Knapik, Bartek T.; Szabo, Botond Tibor; van der Vaart, Aad W.; van Zanten, Harry J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4042471
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 35
social impact