We study the multiphasic formulation of the incompressible Euler equation introduced by Brenier: infinitely many phases evolve according to the compressible Euler equation and are coupled through a global incompressibility constraint. In a convex domain, we are able to prove that the entropy, when averaged over all phases, is a convex function of time, a result that was conjectured by Brenier. The novelty in our approach consists in introducing a time-discretization that allows us to import a flow interchange inequality previously used by Matthes, McCann and Savaré to study first order in time PDE, namely the JKO scheme associated with non-linear parabolic equations.
Time-convexity of the entropy in the multiphasic formulation of the incompressible Euler equation
Lavenant Hugo
2017
Abstract
We study the multiphasic formulation of the incompressible Euler equation introduced by Brenier: infinitely many phases evolve according to the compressible Euler equation and are coupled through a global incompressibility constraint. In a convex domain, we are able to prove that the entropy, when averaged over all phases, is a convex function of time, a result that was conjectured by Brenier. The novelty in our approach consists in introducing a time-discretization that allows us to import a flow interchange inequality previously used by Matthes, McCann and Savaré to study first order in time PDE, namely the JKO scheme associated with non-linear parabolic equations.File | Dimensione | Formato | |
---|---|---|---|
Convexity_entropy_Euler_Springer.pdf
non disponibili
Descrizione: articolo
Tipologia:
Pdf editoriale (Publisher's layout)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
580.43 kB
Formato
Adobe PDF
|
580.43 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.