We analytically derive, in the context of the replica formalism, the first finite-size corrections to the average optimal cost in the random assignment problem for a quite generic distribution law for the costs. We show that, when moving from a power-law distribution to a Γ distribution, the leading correction changes both in sign and in its scaling properties. We also examine the behavior of the corrections when approaching a δ-function distribution. By using a numerical solution of the saddle-point equations, we provide predictions that are confirmed by numerical simulations.

Finite-size corrections in the random assignment problem

Enrico M. , Malatesta;
2017

Abstract

We analytically derive, in the context of the replica formalism, the first finite-size corrections to the average optimal cost in the random assignment problem for a quite generic distribution law for the costs. We show that, when moving from a power-law distribution to a Γ distribution, the leading correction changes both in sign and in its scaling properties. We also examine the behavior of the corrections when approaching a δ-function distribution. By using a numerical solution of the saddle-point equations, we provide predictions that are confirmed by numerical simulations.
2017
2017
Caracciolo, Sergio; D'Achille, Matteo P.; Malatesta, ENRICO MARIA; Sicuro, Gabriele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4029518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact