This paper shows how the theory of Dirichlet forms can be used to deliver proofs of optimal scaling results for Markov chain Monte Carlo algorithms (specifically, Metropolis Hastings random walk samplers) under regularity conditions which are substantially weaker than those required by the original approach (based on the use of infinitesimal generators). The Dirichlet form methods have the added advantage of providing an explicit construction of the underlying infinite-dimensional context. In particular, this enables us directly to establish weak convergence to the relevant infinite-dimensional distributions.

A Dirichlet form approach to MCMC optimal scaling

Giacomo Zanella
;
2017

Abstract

This paper shows how the theory of Dirichlet forms can be used to deliver proofs of optimal scaling results for Markov chain Monte Carlo algorithms (specifically, Metropolis Hastings random walk samplers) under regularity conditions which are substantially weaker than those required by the original approach (based on the use of infinitesimal generators). The Dirichlet form methods have the added advantage of providing an explicit construction of the underlying infinite-dimensional context. In particular, this enables us directly to establish weak convergence to the relevant infinite-dimensional distributions.
2017
2017
Zanella, Giacomo; Bedard, Mylene; S Kendall, Wilfrid
File in questo prodotto:
File Dimensione Formato  
SPA_paper.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Pdf editoriale (Publisher's layout)
Licenza: Creative commons
Dimensione 431.23 kB
Formato Adobe PDF
431.23 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4021076
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact