The general pattern of estimated volatilities of macroeconomic and financial variables is often broadly similar. We propose two models in which conditional volatilities feature comovement and study them using U.S. macroeconomic data. The first model specifies the conditional volatilities as driven by a single common unobserved factor, plus an idiosyncratic component. We label this model BVAR with general factor stochastic volatility (BVAR-GFSV) and we show that the loss in terms of marginal likelihood from assuming a common factor for volatility is moderate. The second model, which we label BVAR with common stochastic volatility (BVAR-CSV), is a special case of the BVAR-GFSV in which the idiosyncratic component is eliminated and the loadings to the factor are set to 1 for all the conditional volatilities. Such restrictions permit a convenient Kronecker structure for the posterior variance of the VAR coefficients, which in turn permits estimating the model even with large datasets. While perhaps misspecified, the BVAR-CSV model is strongly supported by the data when compared against standard homoscedastic BVARs, and it can produce relatively good point and density forecasts by taking advantage of the information contained in large datasets.
Common drifting volatility in large Bayesian VARs
CARRIERO, ANDREA;MARCELLINO, MASSIMILIANO
2016
Abstract
The general pattern of estimated volatilities of macroeconomic and financial variables is often broadly similar. We propose two models in which conditional volatilities feature comovement and study them using U.S. macroeconomic data. The first model specifies the conditional volatilities as driven by a single common unobserved factor, plus an idiosyncratic component. We label this model BVAR with general factor stochastic volatility (BVAR-GFSV) and we show that the loss in terms of marginal likelihood from assuming a common factor for volatility is moderate. The second model, which we label BVAR with common stochastic volatility (BVAR-CSV), is a special case of the BVAR-GFSV in which the idiosyncratic component is eliminated and the loadings to the factor are set to 1 for all the conditional volatilities. Such restrictions permit a convenient Kronecker structure for the posterior variance of the VAR coefficients, which in turn permits estimating the model even with large datasets. While perhaps misspecified, the BVAR-CSV model is strongly supported by the data when compared against standard homoscedastic BVARs, and it can produce relatively good point and density forecasts by taking advantage of the information contained in large datasets.File | Dimensione | Formato | |
---|---|---|---|
CSV.pdf
non disponibili
Tipologia:
Documento in Pre-print (Pre-print document)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.92 MB
Formato
Adobe PDF
|
4.92 MB | Adobe PDF | Visualizza/Apri |
acceptance letter.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
39.01 kB
Formato
Adobe PDF
|
39.01 kB | Adobe PDF | Visualizza/Apri |
published.pdf
non disponibili
Tipologia:
Pdf editoriale (Publisher's layout)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
867.19 kB
Formato
Adobe PDF
|
867.19 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.