We derive for the first time the limiting distribution of maxima of skew-t random vectors and we show that its limiting case, as the degree of freedom goes to infinity, is the skewed version of the well-known Hüsler–Reiss model. The advantage of the new families of models is that they are particularly flexible, allowing for both symmetric and asymmetric dependence structures and permitting the modelling of multivariate extremes with dimensions greater than two.

Multivariate extreme models based on underlying skew- and skew-normal distributions

PADOAN, SIMONE
2011

Abstract

We derive for the first time the limiting distribution of maxima of skew-t random vectors and we show that its limiting case, as the degree of freedom goes to infinity, is the skewed version of the well-known Hüsler–Reiss model. The advantage of the new families of models is that they are particularly flexible, allowing for both symmetric and asymmetric dependence structures and permitting the modelling of multivariate extremes with dimensions greater than two.
2011
Padoan, Simone
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/3855299
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 32
social impact