A new method is suggested to evaluate the Bayes factor for choosing between two nested models using improper priors for the model parameters. Within the above framework it is shown that commonly used vague priors always lead to an infinite Bayes factor. For normal linear model we identify a class of improper priors consistent within a finite Bayes factor. Furthermore we single out a subclass of such priors under which the Bayes factor is a function of the standard F-statistics. A numerical illustration is provided in the one-way analysis of variance setup.

Bayes Factors for Linear Models and Improper Priors

VERONESE, PIERO
1992

Abstract

A new method is suggested to evaluate the Bayes factor for choosing between two nested models using improper priors for the model parameters. Within the above framework it is shown that commonly used vague priors always lead to an infinite Bayes factor. For normal linear model we identify a class of improper priors consistent within a finite Bayes factor. Furthermore we single out a subclass of such priors under which the Bayes factor is a function of the standard F-statistics. A numerical illustration is provided in the one-way analysis of variance setup.
1992
9780198522669
Bayesian Statistics 4 Proceedings of the Fourth Valencia International Meeting: Dedicated to the memory of Morris H. DeGroot, 1931-1989: April 15-20, 1991
G., Consonni; Veronese, Piero
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/3750096
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact