In the framework of the theory of stochastic integration with respect to a family of semimartingales depending on a continuous parameter, introduced by De Donno and Pratelli as a mathematical background to the theory of bond markets, we analyze a special class of integrands that preserve some nice properties of the finite-dimensional stochastic integral. In particular, we focus our attention on the class of processes considered by Mikulevicius and Rozovskii for the case of a locally square integrable cylindrical martingale and which includes an appropriate set of measure-valued processes.

On a class of generalized integrands

DE DONNO, MARZIA
2007

Abstract

In the framework of the theory of stochastic integration with respect to a family of semimartingales depending on a continuous parameter, introduced by De Donno and Pratelli as a mathematical background to the theory of bond markets, we analyze a special class of integrands that preserve some nice properties of the finite-dimensional stochastic integral. In particular, we focus our attention on the class of processes considered by Mikulevicius and Rozovskii for the case of a locally square integrable cylindrical martingale and which includes an appropriate set of measure-valued processes.
2007
DE DONNO, Marzia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/192739
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact