Existing methods for data interpolation or backdating are either univariate or based on a very limited number of series, due to data and computing constraints that were binding until the recent past. Nowadays large datasets are readily available, and models with hundreds of parameters are easily estimated. We model these large datasets with a factor model, and develop an interpolation method that exploits the estimated factors as an efficient summary of all available information. The method is compared with existing standard approaches from a theoretical point of view, by means of Monte Carlo simulations, and also when applied to actual macroeconomic series. The results indicate that our method is rather robust to model misspecification, although traditional multivariate methods also work well while univariate approaches are systematically outperformed. When interpolated series are subsequently used in econometric analyses, biases can emerge, but they are smaller with multivariate approaches, including factor-based ones.

Interpolation with a large information set

MARCELLINO, MASSIMILIANO;
2006

Abstract

Existing methods for data interpolation or backdating are either univariate or based on a very limited number of series, due to data and computing constraints that were binding until the recent past. Nowadays large datasets are readily available, and models with hundreds of parameters are easily estimated. We model these large datasets with a factor model, and develop an interpolation method that exploits the estimated factors as an efficient summary of all available information. The method is compared with existing standard approaches from a theoretical point of view, by means of Monte Carlo simulations, and also when applied to actual macroeconomic series. The results indicate that our method is rather robust to model misspecification, although traditional multivariate methods also work well while univariate approaches are systematically outperformed. When interpolated series are subsequently used in econometric analyses, biases can emerge, but they are smaller with multivariate approaches, including factor-based ones.
Marcellino, Massimiliano; Angelini, E; Henry, J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11565/51380
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact