A random cumulative distribution function (cdf) F on [0, ∞) from a beta-Stacy process is defined. It is shown to be neutral to the right and a generalization of the Dirichlet process. The posterior distribution is also a beta-Stacy process given independent and identically distributed (iid) observations, possibly with right censoring, from F. A generalization of the Pólya-urn scheme is introduced which characterizes the discrete beta-Stacy process.
PRODOTTO NON ANCORA VALIDATO
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Beta-stacy processes and a generalization of the polya-urn scheme |
Data di pubblicazione: | 1997 |
Autori: | |
Autori: | Muliere, Pietro; Walker, S. |
Rivista: | ANNALS OF STATISTICS |
Abstract: | A random cumulative distribution function (cdf) F on [0, ∞) from a beta-Stacy process is defined. It is shown to be neutral to the right and a generalization of the Dirichlet process. The posterior distribution is also a beta-Stacy process given independent and identically distributed (iid) observations, possibly with right censoring, from F. A generalization of the Pólya-urn scheme is introduced which characterizes the discrete beta-Stacy process. |
Codice identificativo Scopus: | 2-s2.0-0031508902 |
Codice identificativo ISI: | WOS:000079134900019 |
Appare nelle tipologie: | 01 - Article in academic journal / Articolo su rivista Scientifica |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.