For a measurable space, let C and D be convex, weak* closed sets of probability measures. We show that if C∪D satisfies the Lyapunov property, then there exists a measurable set A such that that min{P(E) : P∈C}>max{Q(E) : Q∈D}. We give applications to Maxmin Expected Utility (MEU) and to the core of a lower probability.

When an event makes a difference

AMARANTE, MASSIMILIANO;Maccheroni, Fabio
2006

Abstract

For a measurable space, let C and D be convex, weak* closed sets of probability measures. We show that if C∪D satisfies the Lyapunov property, then there exists a measurable set A such that that min{P(E) : P∈C}>max{Q(E) : Q∈D}. We give applications to Maxmin Expected Utility (MEU) and to the core of a lower probability.
2006
Amarante, Massimiliano; Maccheroni, Fabio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/51234
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact