For a measurable space, let C and D be convex, weak* closed sets of probability measures. We show that if C∪D satisfies the Lyapunov property, then there exists a measurable set A such that that min{P(E) : P∈C}>max{Q(E) : Q∈D}. We give applications to Maxmin Expected Utility (MEU) and to the core of a lower probability.
Titolo: | When an event makes a difference | |
Data di pubblicazione: | 2006 | |
Autori: | MACCHERONI, FABIO ANGELO (Corresponding) | |
Autori: | Amarante, Massimiliano; Maccheroni, Fabio | |
Rivista: | THEORY AND DECISION | |
Abstract: | For a measurable space, let C and D be convex, weak* closed sets of probability measures. We show that if C∪D satisfies the Lyapunov property, then there exists a measurable set A such that that min{P(E) : P∈C}>max{Q(E) : Q∈D}. We give applications to Maxmin Expected Utility (MEU) and to the core of a lower probability. | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s11238-005-4569-x | |
Appare nelle tipologie: | 01 - Article in academic journal / Articolo su rivista scientifica |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.