A function f is extractable if it is possible to algorithmically “extract,” from any adversarial program that outputs a value y in the image of f, a preimage of y. When combined with hardness properties such as one-wayness or collision-resistance, extractability has proven to be a powerful tool. However, so far, extractability has not been explicitly shown. Instead, it has only been considered as a non-standard knowledge assumption on certain functions. We make two headways in the study of the existence of extractable one-way functions (EOWFs). On the negative side, we show that if there exist indistinguishability obfuscators for a certain class of circuits then there do not exist EOWFs where extraction works for any adversarial program with auxiliary-input of unbounded polynomial length. On the positive side, for adversarial programs with bounded auxiliary-input (and unbounded polynomial running time), we give the first construction of EOWFs with an explicit extraction procedure, based on relatively standard assumptions (e.g., sub-exponential hardness of Learning with Errors). We then use these functions to construct the first 2-message zero-knowledge arguments and 3-message zeroknowledge arguments of knowledge, against the same class of adversarial verifiers, from essentially the same assumptions.
On the Existence of Extractable One-Way Functions
Rosen, Alon
Membro del Collaboration Group
2016
Abstract
A function f is extractable if it is possible to algorithmically “extract,” from any adversarial program that outputs a value y in the image of f, a preimage of y. When combined with hardness properties such as one-wayness or collision-resistance, extractability has proven to be a powerful tool. However, so far, extractability has not been explicitly shown. Instead, it has only been considered as a non-standard knowledge assumption on certain functions. We make two headways in the study of the existence of extractable one-way functions (EOWFs). On the negative side, we show that if there exist indistinguishability obfuscators for a certain class of circuits then there do not exist EOWFs where extraction works for any adversarial program with auxiliary-input of unbounded polynomial length. On the positive side, for adversarial programs with bounded auxiliary-input (and unbounded polynomial running time), we give the first construction of EOWFs with an explicit extraction procedure, based on relatively standard assumptions (e.g., sub-exponential hardness of Learning with Errors). We then use these functions to construct the first 2-message zero-knowledge arguments and 3-message zeroknowledge arguments of knowledge, against the same class of adversarial verifiers, from essentially the same assumptions.File | Dimensione | Formato | |
---|---|---|---|
2014-402.pdf
accesso aperto
Tipologia:
Documento in Pre-print (Pre-print document)
Licenza:
Creative commons
Dimensione
478.72 kB
Formato
Adobe PDF
|
478.72 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.