Leave-one-out cross-validation (LOO-CV) is a popular method for estimating out-of-sample predictive accuracy. However, computing LOO-CV criteria can be computationally expensive due to the need to fit the model multiple times. In the Bayesian context, importance sampling provides a possible solution but classical approaches can easily produce estimators whose asymptotic variance is infinite, making them potentially unreliable. Here we propose and analyze a novel mixture estimator to compute Bayesian LOO-CV criteria. Our method retains the simplicity and computational convenience of classical approaches, while guaranteeing finite asymptotic variance of the resulting estimators. Both theoretical and numerical results are provided to illustrate the improved robustness and efficiency. The computational benefits are particularly significant in high-dimensional problems, allowing to perform Bayesian LOO-CV for a broader range of models, and datasets with highly influential observations. The proposed methodology is easily implementable in standard probabilistic programming software and has a computational cost roughly equivalent to fitting the original model once. Supplementary materials for this article are available online.

Robust Leave-One-Out Cross-Validation for High-Dimensional Bayesian Models

Silva, Luca Alessandro;Zanella, Giacomo
2024

Abstract

Leave-one-out cross-validation (LOO-CV) is a popular method for estimating out-of-sample predictive accuracy. However, computing LOO-CV criteria can be computationally expensive due to the need to fit the model multiple times. In the Bayesian context, importance sampling provides a possible solution but classical approaches can easily produce estimators whose asymptotic variance is infinite, making them potentially unreliable. Here we propose and analyze a novel mixture estimator to compute Bayesian LOO-CV criteria. Our method retains the simplicity and computational convenience of classical approaches, while guaranteeing finite asymptotic variance of the resulting estimators. Both theoretical and numerical results are provided to illustrate the improved robustness and efficiency. The computational benefits are particularly significant in high-dimensional problems, allowing to perform Bayesian LOO-CV for a broader range of models, and datasets with highly influential observations. The proposed methodology is easily implementable in standard probabilistic programming software and has a computational cost roughly equivalent to fitting the original model once. Supplementary materials for this article are available online.
2024
2023
Silva, Luca Alessandro; Zanella, Giacomo
File in questo prodotto:
File Dimensione Formato  
Silva_Zanella_2024_jasa.pdf

non disponibili

Descrizione: article
Tipologia: Pdf editoriale (Publisher's layout)
Licenza: Copyright dell'editore
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4069201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 2
social impact