Some of the routing protocols used in telecommunication networks route traffic on a shortest path tree according to configurable integral link weights. One crucial issue for network operators is finding a weight function that ensures a stable routing: when some link fails, traffic whose path does not use that link should not be rerouted. In this paper we improve on several previously best results for finding small stable weights. As a conceptual contribution, we draw a connection between the stable weights problem and the seemingly unrelated unique-max coloring problem. In unique-max coloring, one is given a set of points and a family of subsets of those points called regions. The task is to assign to each region a color represented as an integer such that, for every point, one region containing it has a color strictly larger than the color of any other region containing this point. In our setting, points and regions become edges and paths of the shortest path tree, respectively, and based on this connection, we provide stable weight functions with a maximum weight of O(n log n) in the case of single link failure, where n is the number of vertices in the network. Furthermore, if the root of the shortest path tree is known, we present an algorithm for determining stable weights bounded by 4n, which is optimal up to constant factors. For the case of an arbitrary number of failures, we show how stable weights bounded by 3nn can be obtained. All the results improve on the previously best known bounds. © 2013 Society for Industrial and Applied Mathematics.

Stable routing and unique-max coloring on trees

Sanita', Laura;
2013

Abstract

Some of the routing protocols used in telecommunication networks route traffic on a shortest path tree according to configurable integral link weights. One crucial issue for network operators is finding a weight function that ensures a stable routing: when some link fails, traffic whose path does not use that link should not be rerouted. In this paper we improve on several previously best results for finding small stable weights. As a conceptual contribution, we draw a connection between the stable weights problem and the seemingly unrelated unique-max coloring problem. In unique-max coloring, one is given a set of points and a family of subsets of those points called regions. The task is to assign to each region a color represented as an integer such that, for every point, one region containing it has a color strictly larger than the color of any other region containing this point. In our setting, points and regions become edges and paths of the shortest path tree, respectively, and based on this connection, we provide stable weight functions with a maximum weight of O(n log n) in the case of single link failure, where n is the number of vertices in the network. Furthermore, if the root of the shortest path tree is known, we present an algorithm for determining stable weights bounded by 4n, which is optimal up to constant factors. For the case of an arbitrary number of failures, we show how stable weights bounded by 3nn can be obtained. All the results improve on the previously best known bounds. © 2013 Society for Industrial and Applied Mathematics.
2013
Hahnle, N.; Sanita', Laura; Zenklusen, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4063992
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact