The Spanning Tree Protocol routes traffic on shortest path trees. If some edges fail, the traffic has to be rerouted consequently, setting up alternative trees. In this paper we design efficient algorithms to compute polynomial-size integer weights so as to enforce the following stability property: if q=O(1) edges fail, traffic demands that are not affected by the failures are not redirected. Stability is a goal pursued by network operators in order to minimize transmission delays due to the restoration process.
Stable routing under the Spanning Tree Protocol
Sanità, Laura
2010
Abstract
The Spanning Tree Protocol routes traffic on shortest path trees. If some edges fail, the traffic has to be rerouted consequently, setting up alternative trees. In this paper we design efficient algorithms to compute polynomial-size integer weights so as to enforce the following stability property: if q=O(1) edges fail, traffic demands that are not affected by the failures are not redirected. Stability is a goal pursued by network operators in order to minimize transmission delays due to the restoration process.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.