The traditional frequentist approach to hypothesis testing has recently come under extensive debate, raising several critical concerns. Additionally, practical applications often blend the decision-theoretical framework pioneered by Neyman and Pearson with the inductive inferential process relied on the p-value, as advocated by Fisher. The combination of the two methods has led to interpreting the p-value as both an observed error rate and a measure of empirical evidence for the hypothesis. Unfortunately, both interpretations pose difficulties. In this context, we propose that resorting to confidence distributions can offer a valuable solution to address many of these critical issues. Rather than suggesting an automatic procedure, we present a natural approach to tackle the problem within a broader inferential context. Through the use of confidence distributions, we show the possibility of defining two statistical measures of evidence that align with different types of hypotheses under examination. These measures, unlike the p-value, exhibit coherence, simplicity of interpretation, and ease of computation, as exemplified by various illustrative examples spanning diverse fields. Furthermore, we provide theoretical results that establish connections between our proposal, other measures of evidence given in the literature, and standard testing concepts such as size, optimality, and the p-value.

Confidence distributions and hypothesis testing

Melilli, Eugenio
;
Veronese, Piero
2024

Abstract

The traditional frequentist approach to hypothesis testing has recently come under extensive debate, raising several critical concerns. Additionally, practical applications often blend the decision-theoretical framework pioneered by Neyman and Pearson with the inductive inferential process relied on the p-value, as advocated by Fisher. The combination of the two methods has led to interpreting the p-value as both an observed error rate and a measure of empirical evidence for the hypothesis. Unfortunately, both interpretations pose difficulties. In this context, we propose that resorting to confidence distributions can offer a valuable solution to address many of these critical issues. Rather than suggesting an automatic procedure, we present a natural approach to tackle the problem within a broader inferential context. Through the use of confidence distributions, we show the possibility of defining two statistical measures of evidence that align with different types of hypotheses under examination. These measures, unlike the p-value, exhibit coherence, simplicity of interpretation, and ease of computation, as exemplified by various illustrative examples spanning diverse fields. Furthermore, we provide theoretical results that establish connections between our proposal, other measures of evidence given in the literature, and standard testing concepts such as size, optimality, and the p-value.
2024
2024
Melilli, Eugenio; Veronese, Piero
File in questo prodotto:
File Dimensione Formato  
Paper.pdf

non disponibili

Descrizione: Articolo
Tipologia: Documento in Post-print (Post-print document)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 523.08 kB
Formato Adobe PDF
523.08 kB Adobe PDF   Visualizza/Apri
email_accepted_paper.pdf

non disponibili

Descrizione: Lettera di accettazione
Tipologia: Allegato per valutazione Bocconi (Attachment for Bocconi evaluation)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 138.78 kB
Formato Adobe PDF
138.78 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4062956
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact