A majority of breast cancers are driven by estrogen via estrogen receptor-α (ERα). Our previous studies indicate that hypoxia-inducible factor 1α (HIF-1α) cooperates with ERα in breast cancer cells. However, whether ERα is implicated in the direct regulation of HIF-1α and the role of HIF-1α in endocrine therapy response are unknown. In this study we found that a subpopulation of HIF-1α targets, many of them bearing both hypoxia response elements and estrogen response elements, are regulated by ERα in normoxia and hypoxia. Interestingly, the HIF-1α gene itself also bears an estrogen response element, and its expression is directly regulated by ERα. Clinical data revealed that expression of the HIF-1α gene or a hypoxia metagene signature is associated with a poor outcome to endocrine treatment in ERα+ breast cancer. HIF-1α was able to confer endocrine therapy resistance to ERα+ breast cancer cells. Our findings define, for the first time to our knowledge, a direct regulatory pathway between ERα and HIF-1α, which might modulate hormone response in treatment.

Estrogen receptor-α directly regulates the hypoxiainducible factor 1 pathway associated with antiestrogen response in breast cancer

Buffa F. M.
Investigation
;
2015

Abstract

A majority of breast cancers are driven by estrogen via estrogen receptor-α (ERα). Our previous studies indicate that hypoxia-inducible factor 1α (HIF-1α) cooperates with ERα in breast cancer cells. However, whether ERα is implicated in the direct regulation of HIF-1α and the role of HIF-1α in endocrine therapy response are unknown. In this study we found that a subpopulation of HIF-1α targets, many of them bearing both hypoxia response elements and estrogen response elements, are regulated by ERα in normoxia and hypoxia. Interestingly, the HIF-1α gene itself also bears an estrogen response element, and its expression is directly regulated by ERα. Clinical data revealed that expression of the HIF-1α gene or a hypoxia metagene signature is associated with a poor outcome to endocrine treatment in ERα+ breast cancer. HIF-1α was able to confer endocrine therapy resistance to ERα+ breast cancer cells. Our findings define, for the first time to our knowledge, a direct regulatory pathway between ERα and HIF-1α, which might modulate hormone response in treatment.
2015
Yang, J.; Altahan, A.; Jones, D. T.; Buffa, F. M.; Bridges, E.; Interiano, R. B.; Qu, C.; Vogt, N.; Li, J. -L.; Baban, D.; Ragoussis, J.; Nicholson, R.; Davidoff, A. M.; Harris, A. L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4062601
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 101
  • ???jsp.display-item.citation.isi??? 94
social impact