We present a simple and direct approach to duality for Optimal Transport for lower semicontinuous cost functionals in arbitrary completely regular topological spaces, showing that the Optimal Transport functional can be interpreted as the largest sublinear and weakly lower semicontinuous functional extending the cost between pairs of Dirac masses.

A simple relaxation approach to duality for Optimal Transport problems in completely regular spaces

Savarè, Giuseppe
;
Sodini, Giacomo Enrico
2022

Abstract

We present a simple and direct approach to duality for Optimal Transport for lower semicontinuous cost functionals in arbitrary completely regular topological spaces, showing that the Optimal Transport functional can be interpreted as the largest sublinear and weakly lower semicontinuous functional extending the cost between pairs of Dirac masses.
2022
2022
Savarè, Giuseppe; Sodini, Giacomo Enrico
File in questo prodotto:
File Dimensione Formato  
jca2203-b-2.pdf

non disponibili

Descrizione: Paper
Tipologia: Pdf editoriale (Publisher's layout)
Licenza: Copyright dell'editore
Dimensione 126.6 kB
Formato Adobe PDF
126.6 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4061975
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact