Let f(n) be the largest integer such that every poset on n elements has a 2-dimensional subposet on f(n) elements. What is the asymptotics of f(n)? It is easy to see that f(n) = n1/2. We improve the best known upper bound and show f(n) = O (n2/3). For higher dimensions, we show fd(n)=O(ndd+1), where fd(n) is the largest integer such that every poset on n elements has a d-dimensional subposet on fd(n) elements.

On an extremal problem for poset dimension

Polak, Adam
2018

Abstract

Let f(n) be the largest integer such that every poset on n elements has a 2-dimensional subposet on f(n) elements. What is the asymptotics of f(n)? It is easy to see that f(n) = n1/2. We improve the best known upper bound and show f(n) = O (n2/3). For higher dimensions, we show fd(n)=O(ndd+1), where fd(n) is the largest integer such that every poset on n elements has a d-dimensional subposet on fd(n) elements.
2018
2017
Guspiel, Grzegorz; Micek, Piotr; Polak, Adam
File in questo prodotto:
File Dimensione Formato  
s11083-017-9444-1.pdf

accesso aperto

Descrizione: article
Tipologia: Pdf editoriale (Publisher's layout)
Licenza: Creative commons
Dimensione 508.59 kB
Formato Adobe PDF
508.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4061818
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact