Lead shielding in contact with the patient's skin is often encountered in radiotherapy with electron beams. The influence of the lead shielding on dose distributions in the patient cannot fully be assessed using modern treatment planning systems. In this work the problem of quantifying the effect of lead shielding on dose distributions is addressed. Monte Carlo dose calculations were performed in a half-blocked water phantom shielded by lead, using a realistic model for the fluence of an electron linear accelerator. Electron beam energies of 6-20 MeV and lead thicknesses of 1-7 mm are used for 10 × 10 cm2 and 5 × 5 cm2 fields. The perturbation of the particle fluence and dose distributions in water introduced by the lead shielding is quantified. The effect of oblique electron beams on the dose perturbation is shown. A fictitious clinical example, the shielding of an eye in electron beam treatment, is used to demonstrate the usefulness of Monte Carlo based treatment planning algorithms that can incorporate the effects of lead shielding.

Quantifying effects of lead shielding in electron beams: A Monte Carlo study

Buffa F. M.;
2001

Abstract

Lead shielding in contact with the patient's skin is often encountered in radiotherapy with electron beams. The influence of the lead shielding on dose distributions in the patient cannot fully be assessed using modern treatment planning systems. In this work the problem of quantifying the effect of lead shielding on dose distributions is addressed. Monte Carlo dose calculations were performed in a half-blocked water phantom shielded by lead, using a realistic model for the fluence of an electron linear accelerator. Electron beam energies of 6-20 MeV and lead thicknesses of 1-7 mm are used for 10 × 10 cm2 and 5 × 5 cm2 fields. The perturbation of the particle fluence and dose distributions in water introduced by the lead shielding is quantified. The effect of oblique electron beams on the dose perturbation is shown. A fictitious clinical example, the shielding of an eye in electron beam treatment, is used to demonstrate the usefulness of Monte Carlo based treatment planning algorithms that can incorporate the effects of lead shielding.
2001
Verhaegen, F.; Buffa, F. M.; Deehan, C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4061176
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact