Extreme Value Theory plays an important role to provide approximation results for the extremes of a sequence of independent random variables when their distribution is unknown. An important one is given by the \textcolor{red}{generalised Pareto distribution} $H_\gamma(x)$ as an approximation of the distribution $F_t(s(t)x)$ of the excesses over a threshold $t$, where $s(t)$ is a suitable norming function. In this paper we study the rate of convergence of $F_t(s(t)\cdot)$ to $H_\gamma$ in variational and Hellinger distances and translate it into that regarding the Kullback-Leibler divergence between the respective densities.
Strong convergence of peaks over a threshold
Padoan, Simone A.Methodology
;Rizzelli, Stefano
2023
Abstract
Extreme Value Theory plays an important role to provide approximation results for the extremes of a sequence of independent random variables when their distribution is unknown. An important one is given by the \textcolor{red}{generalised Pareto distribution} $H_\gamma(x)$ as an approximation of the distribution $F_t(s(t)x)$ of the excesses over a threshold $t$, where $s(t)$ is a suitable norming function. In this paper we study the rate of convergence of $F_t(s(t)\cdot)$ to $H_\gamma$ in variational and Hellinger distances and translate it into that regarding the Kullback-Leibler divergence between the respective densities.File | Dimensione | Formato | |
---|---|---|---|
acceptance_letter_padoan.pdf
non disponibili
Descrizione: Lettera di accettazione
Tipologia:
Allegato per valutazione Bocconi (Attachment for Bocconi evaluation)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
132.45 kB
Formato
Adobe PDF
|
132.45 kB | Adobe PDF | Visualizza/Apri |
Strong_POT_final.pdf
non disponibili
Descrizione: versione finale accettata
Tipologia:
Documento in Pre-print (Pre-print document)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
354.75 kB
Formato
Adobe PDF
|
354.75 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.