Cooperative games form an important class of problems in game theory, where a key goal is to distribute a value among a set of players who are allowed to cooperate by forming coalitions. An outcome of the game is given by an allocation vector that assigns a value share to each player. A crucial aspect of such games is submodularity (or convexity). Indeed, convex instances of cooperative games exhibit several nice properties, e.g. regarding the existence and computation of allocations realizing some of the most important solution concepts proposed in the literature. For this reason, a relevant question is whether one can give a polynomial-time characterization of submodular instances, for prominent cooperative games that are in general non-convex. In this paper, we focus on a fundamental and widely studied cooperative game, namely the spanning tree game. An efficient recognition of submodular instances of this game was not known so far, and explicitly mentioned as an open question in the literature. We here settle this open problem by giving a polynomial-time characterization of submodular spanning tree games.

An efficient characterization of submodular spanning tree games

Sanita' Laura
2020

Abstract

Cooperative games form an important class of problems in game theory, where a key goal is to distribute a value among a set of players who are allowed to cooperate by forming coalitions. An outcome of the game is given by an allocation vector that assigns a value share to each player. A crucial aspect of such games is submodularity (or convexity). Indeed, convex instances of cooperative games exhibit several nice properties, e.g. regarding the existence and computation of allocations realizing some of the most important solution concepts proposed in the literature. For this reason, a relevant question is whether one can give a polynomial-time characterization of submodular instances, for prominent cooperative games that are in general non-convex. In this paper, we focus on a fundamental and widely studied cooperative game, namely the spanning tree game. An efficient recognition of submodular instances of this game was not known so far, and explicitly mentioned as an open question in the literature. We here settle this open problem by giving a polynomial-time characterization of submodular spanning tree games.
2020
2020
Koh, Zhuan Khye; Sanita', Laura
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4053394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact