We introduce the stepp packages for R and Stata that implement the subpopulation treatment effect pattern plot (STEPP) method. STEPP is a nonparametric graphical tool aimed at examin- ing possible heterogeneous treatment effects in subpopulations defined on a continuous covariate or composite score. More pecifically, STEPP considers overlapping subpopulations defined with respect to a continuous covariate (or risk index) and it estimates a treatment effect for each subpopulation. It also produces confidence regions and tests for treatment effect heterogeneity among the subpopulations. The original method has been extended in different directions such as different survival contexts, outcome types, or more efficient procedures for identifying the overlapping subpopulations. In this paper, we also introduce a novel method to determine the number of subjects within the subpopulations by minimizing the variability of the sizes of the subpopulations generated by a specific parameter combination. We illustrate the packages using both synthetic data and publicly available data sets. The most intensive computations in R are implemented in Fortran, while the Stata version exploits the powerful Mata language.
Subpopulation Treatment Effect Pattern Plot (STEPP) methods with R and Stata
Venturini, Sergio
;Bonetti, Marco;
2023
Abstract
We introduce the stepp packages for R and Stata that implement the subpopulation treatment effect pattern plot (STEPP) method. STEPP is a nonparametric graphical tool aimed at examin- ing possible heterogeneous treatment effects in subpopulations defined on a continuous covariate or composite score. More pecifically, STEPP considers overlapping subpopulations defined with respect to a continuous covariate (or risk index) and it estimates a treatment effect for each subpopulation. It also produces confidence regions and tests for treatment effect heterogeneity among the subpopulations. The original method has been extended in different directions such as different survival contexts, outcome types, or more efficient procedures for identifying the overlapping subpopulations. In this paper, we also introduce a novel method to determine the number of subjects within the subpopulations by minimizing the variability of the sizes of the subpopulations generated by a specific parameter combination. We illustrate the packages using both synthetic data and publicly available data sets. The most intensive computations in R are implemented in Fortran, while the Stata version exploits the powerful Mata language.File | Dimensione | Formato | |
---|---|---|---|
vent-bone-laza-2022.pdf
accesso aperto
Descrizione: Article
Tipologia:
Documento in Post-print (Post-print document)
Licenza:
Creative commons
Dimensione
568.21 kB
Formato
Adobe PDF
|
568.21 kB | Adobe PDF | Visualizza/Apri |
stepp_suppmat.pdf
accesso aperto
Descrizione: Supp Mat
Tipologia:
Documento in Post-print (Post-print document)
Licenza:
Creative commons
Dimensione
891.96 kB
Formato
Adobe PDF
|
891.96 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.