We prove a compactness principle for the anisotropic formulation of the Plateau problem in any codimension, in the same spirit of the previous works of the authors. In particular, we perform a new strategy for the proof of the rectifiability of the minimal set, based on the new anisotropic counterpart of the Allard rectifiability theorem proved in De Philippis et al. (Commun Pure Appl Math 71(6):1123–1148, 2016). As a consequence we provide a new proof of the Reifenberg existence theorem.

Existence results for minimizers of parametric elliptic functionals

De Rosa, Antonio;
2020

Abstract

We prove a compactness principle for the anisotropic formulation of the Plateau problem in any codimension, in the same spirit of the previous works of the authors. In particular, we perform a new strategy for the proof of the rectifiability of the minimal set, based on the new anisotropic counterpart of the Allard rectifiability theorem proved in De Philippis et al. (Commun Pure Appl Math 71(6):1123–1148, 2016). As a consequence we provide a new proof of the Reifenberg existence theorem.
2020
2019
De Philippis, Guido; De Rosa, Antonio; Ghiraldin, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4043551
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 13
social impact