More of the social world lives within electronic text than ever before, from collective activity on the web, social media, and instant messaging to online transactions, government intelligence, and digitized libraries. This supply of text has elicited demand for natural language processing and machine learning tools to filter, search, and translate text into valuable data. We survey some of the most exciting computational approaches to text analysis, highlighting both supervised methods that extend old theories to new data and unsupervised techniques that discover hidden regularities worth theorizing. We then review recent research that uses these tools to develop social insight by exploring (a) collective attention and reasoning through the content of communication; (b) social relationships through the process of communication; and (c) social states, roles, and moves identified through heterogeneous signals within communication. We highlight social questions for which these advances could offer powerful new insight.
Machine translation: mining text for social theory
Aceves, Pedro
2016
Abstract
More of the social world lives within electronic text than ever before, from collective activity on the web, social media, and instant messaging to online transactions, government intelligence, and digitized libraries. This supply of text has elicited demand for natural language processing and machine learning tools to filter, search, and translate text into valuable data. We survey some of the most exciting computational approaches to text analysis, highlighting both supervised methods that extend old theories to new data and unsupervised techniques that discover hidden regularities worth theorizing. We then review recent research that uses these tools to develop social insight by exploring (a) collective attention and reasoning through the content of communication; (b) social relationships through the process of communication; and (c) social states, roles, and moves identified through heterogeneous signals within communication. We highlight social questions for which these advances could offer powerful new insight.File | Dimensione | Formato | |
---|---|---|---|
annurev-soc-081715-074206.pdf
non disponibili
Descrizione: articolo
Tipologia:
Pdf editoriale (Publisher's layout)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
916.51 kB
Formato
Adobe PDF
|
916.51 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.