We derive the analytical expression for the first finite-size correction to the average free energy of disordered Ising models on random regular graphs. The formula can be physically interpreted as a weighted sum over all non-self-intersecting loops in the graph, the weight being the free-energy shift due to the addition of the loop to an infinite tree.

The statistical mechanics of random set packing and a generalization of the Karp-Sipser algorithm

Lucibello, Carlo;
2014

Abstract

We derive the analytical expression for the first finite-size correction to the average free energy of disordered Ising models on random regular graphs. The formula can be physically interpreted as a weighted sum over all non-self-intersecting loops in the graph, the weight being the free-energy shift due to the addition of the loop to an infinite tree.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11565/4025613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact