The notion of stability can be generalised to point processes by defining the scaling operation in a randomised way: scaling a configuration by t corresponds to letting such a configuration evolve according to a Markov branching particle system for-log t time. We prove that these are the only stochastic operations satisfying basic associativity and distributivity properties and we thus introduce the notion of branching-stable point processes. For scaling operations corresponding to particles that branch but do not diffuse, we characterise stable distributions as thinning-stable point processes with multiplicities given by the quasi-stationary (or Yaglom) distribution of the branching process under consideration. Finally we extend branching-stability to continuous random variables with the help of continuous branching (CB) processes, and we show that, at least in some frameworks, branching-stable integer random variables are exactly Cox (doubly stochastic Poisson) random variables driven by corresponding CB-stable continuous random variables.
Branching-stable point processes
Giacomo Zanella;
2015
Abstract
The notion of stability can be generalised to point processes by defining the scaling operation in a randomised way: scaling a configuration by t corresponds to letting such a configuration evolve according to a Markov branching particle system for-log t time. We prove that these are the only stochastic operations satisfying basic associativity and distributivity properties and we thus introduce the notion of branching-stable point processes. For scaling operations corresponding to particles that branch but do not diffuse, we characterise stable distributions as thinning-stable point processes with multiplicities given by the quasi-stationary (or Yaglom) distribution of the branching process under consideration. Finally we extend branching-stability to continuous random variables with the help of continuous branching (CB) processes, and we show that, at least in some frameworks, branching-stable integer random variables are exactly Cox (doubly stochastic Poisson) random variables driven by corresponding CB-stable continuous random variables.File | Dimensione | Formato | |
---|---|---|---|
euclid.ejp.1465067225.pdf
accesso aperto
Descrizione: Paper
Tipologia:
Pdf editoriale (Publisher's layout)
Licenza:
PUBBLICO DOMINIO
Dimensione
351.27 kB
Formato
Adobe PDF
|
351.27 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.