Kriging is one of the most widely used emulation methods in simulation. However, memory and time requirements potentially hinder its application to datasets generated by high-dimensional simulators. We borrow from the machine learning literature to propose a new algorithmic implementation of kriging that, while preserving prediction accuracy, notably reduces time and memory requirements. The theoretical and computational foundations of the algorithm are provided. The work then reports results of extensive numerical experiments to compare the performance of the proposed algorithm against current kriging implementations, on simulators of increasing dimensionality. Findings show notable savings in time and memory requirements that allow one to handle inputs in more that $10,000$ dimensions.

Faster kriging: facing high-dimensional simulators

Xuefei Lu;Emanuele Borgonovo
;
2020

Abstract

Kriging is one of the most widely used emulation methods in simulation. However, memory and time requirements potentially hinder its application to datasets generated by high-dimensional simulators. We borrow from the machine learning literature to propose a new algorithmic implementation of kriging that, while preserving prediction accuracy, notably reduces time and memory requirements. The theoretical and computational foundations of the algorithm are provided. The work then reports results of extensive numerical experiments to compare the performance of the proposed algorithm against current kriging implementations, on simulators of increasing dimensionality. Findings show notable savings in time and memory requirements that allow one to handle inputs in more that $10,000$ dimensions.
2020
2019
Lu, Xuefei; Rudi, Alessandro; Borgonovo, Emanuele; Rosasco, Lorenzo
File in questo prodotto:
File Dimensione Formato  
OPRE-2018-08-461_R2_20181229_2.pdf

non disponibili

Descrizione: Pre-Print
Tipologia: Documento in Pre-print (Pre-print document)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 565.54 kB
Formato Adobe PDF
565.54 kB Adobe PDF   Visualizza/Apri
OPRE-2018-08-461_FinalAcceptance.pdf

non disponibili

Descrizione: Lettera Finale Accettazione
Tipologia: Allegato per valutazione Bocconi (Attachment for Bocconi evaluation)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 218.57 kB
Formato Adobe PDF
218.57 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4014831
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact