If a risky asset is subject to a jump-to-default event, the investment horizon affects the optimal portfolio rule, even if the asset returns are unpredictable. The optimal rule solves a non-linear differential equation that, by not depending on the investor's pre-default value function, allows for its direct computation. Importantly for financial planners offering portfolio advice for the long term, tiny amounts of constant jump-to-default risk induce marked time variation in the optimal portfolios of long-run conservative investors. Our results are robust to the introduction of multiple non-defaultable risky assets.

Non-myopic portfolio choice with unpredictable returns: the jump-to-default case

Battauz, Anna;Sbuelz, Alessandro
2018

Abstract

If a risky asset is subject to a jump-to-default event, the investment horizon affects the optimal portfolio rule, even if the asset returns are unpredictable. The optimal rule solves a non-linear differential equation that, by not depending on the investor's pre-default value function, allows for its direct computation. Importantly for financial planners offering portfolio advice for the long term, tiny amounts of constant jump-to-default risk induce marked time variation in the optimal portfolios of long-run conservative investors. Our results are robust to the introduction of multiple non-defaultable risky assets.
2018
2017
Battauz, Anna; Sbuelz, Alessandro
File in questo prodotto:
File Dimensione Formato  
Accepted-Version_Non-Myopic Portfolio Choice with Unpredictable Returns The Jump-to-Default Case MS-151078.pdf

non disponibili

Descrizione: Articolo
Tipologia: Documento in Pre-print (Pre-print document)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 198.54 kB
Formato Adobe PDF
198.54 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/4000385
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact