We propose a targeted and robust modeling of dependence in multivariate time series via dynamic networks, with time-varying predictors included to improve interpretation and prediction. The model is applied to financial markets, estimating effects of verbal and material cooperations.

Bayesian dynamic financial networks with time-varying predictors

DURANTE, DANIELE;
2014

Abstract

We propose a targeted and robust modeling of dependence in multivariate time series via dynamic networks, with time-varying predictors included to improve interpretation and prediction. The model is applied to financial markets, estimating effects of verbal and material cooperations.
2014
2014
Durante, Daniele; Dunson, David B.
File in questo prodotto:
File Dimensione Formato  
SPL_Durante2014.pdf

non disponibili

Descrizione: Publisher's layout version is available at the URL provided.
Tipologia: Documento in Post-print (Post-print document)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 530.41 kB
Formato Adobe PDF
530.41 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11565/3998959
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact